PE pressure pipes made from PE 100-RC

Design and calculation of gas- or water pipelines for a minimum service life of 100 years

Dipl.-Ing. Sven Nonhoff
Dr.-Ing. Joachim Hessel

HESSEL Ingenieurtechnik GmbH
HESSEL Ingenieurtechnik GmbH

We offer SOLUTIONS

- for engineering applications of thermoplastics,
- by quick and comprehensive tests of raw materials,
- to matters concerning design and fabrication.

We are an officially approved testing, inspection and certification facility (NRW 37). raw materials / pipes / shafts

Accredited Testing Laboratory according to DIN EN ISO/IEC 17025 by DAP GmbH (DAP-PL-3760.00)
Contents

1. Overview on Failure Modes
2. Progress in raw material development
3. Requirements of PAS 1075
4. Thermal Ageing
5. New creep rupture curves for PE 100-RC
6. Conclusion
1. Overview on Failure Modes

Failure Modes

- **Logarithmic graph**
 - *σ* [N/mm²] on the y-axis
 - *t* [h] on the x-axis

- **Ductile Failures**
 - Through stretching of material

- **Brittle Failures**
 - Through stress cracking

- **Thermal Ageing**
 - Failures independent of stress level
 - Onset of thermal ageing at 80 °C after 1 year*

- **Relevant for Service Life**

* DVS directive DVS 2205-1, sup. sheet 19
1. Overview on Failure Modes

Test to detect stress cracking resistance: FNCT

Advantage:

The results out of FNCT correlate with results out of pipes under internal pressure

Test time reduction by using surface active solutions

Test fluid – e.g. ARKOPAL N-100

(VA 2.1-4, ISO 16770; DIN EN 12814-3 (2005-10), Anhang A.1; DVS 2203-4)
Influence of medium

- Water
- Gas
- Surface active solution (e.g., 2% ARKOPAL N-100)

Same slope but different rupture times
2. Progress in raw material development

Increasing rupture times

Rupture Time in Hours

<table>
<thead>
<tr>
<th>Year</th>
<th>PE 63</th>
<th>PE 80</th>
<th>PE 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>4</td>
<td>11</td>
<td>10462</td>
</tr>
<tr>
<td>1980</td>
<td>31</td>
<td>51</td>
<td>259</td>
</tr>
<tr>
<td>1999</td>
<td>338</td>
<td>359</td>
<td>14460</td>
</tr>
</tbody>
</table>

Test temperature 80 °C
Tensile load 4 N/mm²
2 % Arkopal N-100

Specimens show brittle failure

PE pressure pipes made from PE100-RC
Requirements to PE 100-RC raw material (PAS 1075)

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress cracking test (FNCT)</td>
<td>> 8760 h (> 1 year) at 80 °C</td>
</tr>
<tr>
<td></td>
<td>4 N/mm², in 2 % Arkopal N-100</td>
</tr>
<tr>
<td>Point loading test on full walled piping</td>
<td>> 8760 h (> 1 year) at 80 °C</td>
</tr>
<tr>
<td></td>
<td>4 N/mm², in 2 % Arkopal N-100</td>
</tr>
<tr>
<td>Thermal ageing test</td>
<td>> 100 years @ 20 °C</td>
</tr>
<tr>
<td>Notch Test on full walled piping (DIN EN ISO 13479)</td>
<td>> 8760 h</td>
</tr>
</tbody>
</table>
3. Requirements of PAS 1075

Requirements to PE 100-RC raw material (PAS 1075)

| FNCT | > 8760 h (> 1 year) at 80 °C 4 N/mm², in 2 % Arkopal N-100 |

⇒⇒⇒⇒ no brittle failure until 1 year

⇒⇒⇒⇒ onset of thermal ageing after 1 year at 80°C in water *

\[\log t [h] \]

\[\log \sigma [N/mm^2] \]

4 N/mm²

* DVS directive DVS 2205-1, sup. sheet 19

PE pressure pipes made from PE100-RC

Plastic Pressure Pipes 05.-07.October 2009 | HESSEL-Ingenieurtechnik GmbH
Requirements to PE 100-RC raw material (PAS 1075)

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress cracking test (FNCT)</td>
<td>> 8760 h (> 1 year) at 80 °C 4 N/mm², in 2 % Arkopal N-100</td>
</tr>
<tr>
<td>Point loading test on full walled piping</td>
<td>> 8760 h (> 1 year) at 80 °C 4 N/mm², in 2 % Arkopal N-100</td>
</tr>
<tr>
<td>Thermal ageing test</td>
<td>> 100 years @ 20 °C</td>
</tr>
<tr>
<td>Notch Test on full walled piping</td>
<td>> 8760 h</td>
</tr>
<tr>
<td>(DIN EN ISO 13479)</td>
<td></td>
</tr>
</tbody>
</table>
4. Thermal ageing

Influencing variables for thermal ageing

- Oxygen concentration
- Temperature
- Flow rate of medium
- Stabilization package
- Local strain situation

NOT taken into account in ISO 9080

⇒ values are too optimistic

⇒ For PE 100-RC materials thermal ageing has to be tested additionally
4. Thermal ageing

Extrapolation of results Arrhenius-Diagram

reciprocal slope of regression curve is proportional to activation energy E_A for thermal ageing

Reciprocal absolute temperature [$1/K$]

$log t$ [h]

> 100 years

80 °C

90 °C

100 °C

-20 °C

-80 °C

-90 °C

-100 °C
4. Thermal ageing

Minimum required activation energy for thermal ageing

1. Requirement: no failure until 100 years @ 20°C

Minimum required activation energy for thermal ageing:

\[E_A \geq 67 \text{ kJ/mol} \]

2. no failure until 1 year @ 80°C

* DVS directive DVS 2205-1, sup. sheet 19

PE pressure pipes made from PE100-RC

Plastic Pressure Pipes 05.-07.October 2009 | HESSEL-Ingenieurtechnik GmbH
5. New creep rupture curves for PE 100-RC

PE 100-RC exceeds standard creep rupture curves

PE 100 according to DIN 8075

PE 100-RC

log \sigma [N/mm^2] vs. log t [h]

flat ‘branch’

5 N/mm²

steep ‘branch’

thermal ageing

1000 h

1 year at 80 °C

?
5. New creep rupture curves for PE 100-RC

New creep rupture curves for PE 100-RC in PAS 1075

Hoop stress [N/mm²]

Rupture time [h]

Creep rupture curves according to DIN 8075

Creep rupture curves according to PAS 1075
6. Conclusion

Conclusion

• PE 100-RC - thermal ageing becomes the relevant failure mechanism

• PE 100-RC exceeds standard creep-rupture curves

• PE 100-RC are raw materials with very high stress crack resistance
 ⇒ High chemical resistance
 ⇒ Extended application alternative installation techniques

• PE 100-RC - New creep rupture curves have been established in PAS 1075
Thank you for your attention !